
Lab 8: State Machines and DAC Setting

UC Davis Physics 116B
Version: March 9, 2020

In this lab, you will be writing a module to set the dual channel, 12-bit DAC that has been inlcuded
on the custom UCD breakout board, which is connected between the Alchitry-Au motherboard
and the Alchitry-Io board that we have been using up until now. This allows both of these boards
to be used simultaneously.

Required Files

You will need the following files, which can be downloaded from the Canvas site if they are not
already on the computer.

• FPGA Files/Alchitry-pins.txt: pin definitions

• FPGA Files/Achitry-UCD-pins.txt: pin definitions for UCD breakout board

• FPGA Files/Lab 8 Files/dac_set-template.v: Template for your dac set.v module

• FPGA Files/Lab 8 Files/dac_set-testbench.v: Test bench file for your dac set.v
module

Pre-lab Questions

You’re using a 12-bit unipolar DAC with a 2.5V reference. What voltage changes should be asso-
ciated with changing the most significant bit (MSB) and the least significant bit (LSB)?

Overview

The custom UCD Breakout Board contains a TI 7822 12-bit dual channel DAC. This DAC is
controlled with 17 pins, which are defined in the Achitry-UCD-pins.txt file:

• DB[11:0] (dac data[11:0]): 12-bit data bus. Can be used to read or write data to the DAC.
In this lab, we will only be writing.

• R/W (dac rw): read/write select. 0 for write, 1 for read. We will be tying it to 0.

• A/B (dac ab): A/B DAC select. 0 to write to DAC A, 1 to write to DAC B.

1



• CS (dac cs): DAC chip select. When this transitions from 0 to 1, the data on DB[11:0] will
be written to the DAC selected by A/B.

• LDAC (dac ldac): The DAC output will be set to the value loaded into the data bus when
this pin goes to 0. We will be tying it permanently to 0.

• CLR (dac clr): Asserting 0 on this pin will reset both DACs to 0. We will be tying it to 1
to prevent this from happening.

We have listed the manufacturer’s name for the pin, with our corresponding signal name shown in
parenthesis.

The DAC is unipolar with a 2.5V reference, so the output should be given by

Vout = (2.5)
data

212

= (2.5)
data

4096

Lab Activities

Figure 1: Header for dac set.v module, including the setup for the state machine.

Write a module with the header shown in Figure 1, starting with the template that has been provided
for you at the Canvas site. Since we’ll be simulating this first, it’s probably best to simply write it
in EDA Playground to begin with.

The desired behavior is that in response to receiving a set signal, the code should generate the
signals necessary to write the data in dacA and dacB to DAC A and B, respectively. It should also
assert a busy bit will this action is in progress. To this end, it should generate the time line shown
in Figure 2.

There are many ways to to this, but we will make this an exercise in using state machines. The
state definitions are also shown in Figure 1, and their behavior is indicated in Figure 2.

We should be able to write to the DAC at the full clock speed of the FPGA, but that won’t be the
case with all DACs, so as an exercise, we will also declare a state clock counter so that we will

2



clk

dac_data[11:0]

dac _ab

dacA[11:0] dacB[11:0]

set

busy

dac _cs

state IDLE IDLESET _ A WRITE _ A SET _B WRITE _B

Figure 2: Time line for the dac set module. In this case, the HOLD parameter has been set to 2.
Also shown are the corresponding states.

remain in each state for a number of clock cycles defined by the parameter HOLD, which will
initially be set to 2, as it is setup in the template.

The state behavior is defined as follows:

• IDLE: Set dac data,dac cs, and dac ab to 0. If set is asserted, reset state clock and set the
next state to SET A.

• SET A: Set dac ab=0, dac cs=0, and dac data=dacA. Increment state clock and test if it’s
equal to HOLD. If it is, reset it and set the next state to WRITE A.

• WRITE A: Set dac cs=1, to clock the data into DAC A. Increment state clock and test if
it’s equal to HOLD. If it is, reset it and set the next state to SET B.

• SET B: Set dac ab=1, dac cs=0, and dac data=dacB. Increment state clock and test if it’s
equal to HOLD. If it is, reset it and set the next state to WRITE B.

• WRITE B: Set dac cs=1 to clock the data into DAC B. Increment state clock and test if
it’s equal to HOLD. If it is, reset it and set the next state to IDLE.

The template includes a working example of the IDLE state, which you can use as a basis for
defining the others.

Simulating the dac set.v Module

After you have written your module in EDA Playground, simulate it using the test bench code
provided. Verify that it generates the waveforms shown in Figure 3. You’ll need to add, remove,
and move traces to get exactly these to display. Once you get the module working, verify that
setting HOLD=4 will double the length of each state.

3



Figure 3: Time line simulation for the dac set module.

Implementing and Testing Your Code

Transfer your ”dac set” module to Alchitry labs and write an ”au top” module to implement it on
the board. In addition to the clk and io dip inputs that you have used before, you will need to
include outputs for all of the signals defined in the Overview section. The definitions for these pins
can be found in the “Alchitry-UCD-pins.txt” file, and must be copied into your constraint file.

You should tie dac clr to 1 to keep the chip from resetting, and both pins dac rw and dac ldac to
0, to indicate that we are writing data and want it to be promptly loaded to the DAC.

Instantiate your dac set module. Tie dac data, dac ab, and dac cs to the corresponding IO pins.
Tie dacA to io dip[11:0] and dacB to io dip[23:12]. You can just tie the set input to 1, to cause
it to continually write whatever is on the data bits. You can leave the busy output disconnected
(connect it to an unconnected wire), since you’re not using it.

Finally, the lines on the breakout board ring quite a bit at high rates, so set HOLD=10 to slow
down the write cycle a bit.

J302J301

GND
100 MHz
Vout(A)
Vout(B)

GND

+5V

GND
dac_clr
dac_ab

dac_ldac
dac_data[11]

dac_data[8]
dac_data[7]
dac_data[6]
dac_data[5]
dac_data[4]
dac_data[3]
dac_data[2]
dac_data[1]

dac_data[11]

dac_data[0]

dac_data[9]
dac_data[10]

dac_cs
dac_rw

Pin 1

Pin 1Pin 18

Pin 18

Figure 4: Pins on the UCD breakout board that are relevant to this lab. Note that the labels on the
silk screen are NOT correct for J301.

Synthesize and download your code. You can test whether it’s working by using an oscilloscope
with the breakout connectors. The pins associated with this lab are shown in Table 1, as well
as Figure 4. These are spring-loaded connectors, which are released by pressing on the top. It’s

4



Table 1: Pinouts for the connectors on the UCD breakout board. Only the ones of relevance to this
lab are listed.

pin J301 J302
1 GND +5V
2 dac clr GND
3 dac ab -
4 dac ldac -
5 dac data[11] -
6 dac data[10] -
7 dac data[9] -
8 dac data[8] -
9 dac data[7] -

10 dac data[6] -
11 dac data[5] -
12 dac data[4] -
13 dac data[3] -
14 dac data[2] -
15 dac data[1] Vout(B)
16 dac data[0] Vout(A)
17 dac cs 100MHz
18 dac rw GND

usually easier to insert jumper wires and connecting the scope to those, rather than trying to use the
scope directly in the connector. You can ground the probes to any of the indicated GND pins. One
hint is to trigger on the dac ab pin, which will transition high in the middle of each write cycle.
Use the scope to verify that the dac cs pin is behaving as expected.

Verify that you can set the voltages of DAC A and DAC B by setting io dip[11:0] and io dip[23:12],
respectively. Measure the voltage changes associated with the LSB and MSB, and verify that they
match your predictions. Also verify that changing the setting of one DAC does not affect the other.

Lab Report

You report should include the answers to the prelab questions, the final version of your dac set
module and au top module, a screen shot of you simulation results, and a scope trace showing that
dac ab and dac cs are behaving as expected.

5


