P116B Homework 4

Due 2/28/2020

1. In class, we discussed the concept of “data sparsification”. Imagine we have a system with
50,000 channels, each with 8 bits of data. We have two options for storing this data
e Store all the data we read out, regardless of the signal size.

e Only store channels that exceed a predefined threshold, along with their address.

(a) How many bits do I need to allocate for the address?

(b) At what “occupancy” (percentage of channels exceeding threshold) does it take less space
to store all the data (with no addresses) rather than the “sparsified” version?

2. For the following module

module hwéd (
input clk, // system clock
input D,
output reg (0=0,
output reg Q1=0,
output reg Q2=0); // Serial data bit

always @(posedge clk) begin

Q0 <= D; // non-bloacking statements
Q1 <= QOID;
Q2 <= Q0&Q1;
end
endmodule

Complete the following time line, assuming 1, )2 and @3 all start at 0, and the D input is
synchronous.



// Serial data bit
// bloacking statements

// system clock

=0,
=0,
=0);

Q1 = QOID;
Q2 = Q0&Q1;

end

always @(posedge clk) begin
Q0 = D;

module hwéd (
input clk,
input D,
output reg QO
output reg (1
output reg Q2

endmodule

3. Repeat the previous problem if the non-blocking statements are replaced with blocking state-
ments.



4. Redo the “parallel to serial converter” problem from a previous homework set, using Verilog
code rather than discrete components.

As a reminder, this is a circuit that will load a four bit word (A[3 : 0]) in response to a
“LOAD” signal, and then clock the bits out serially to Q over the next four clock cycles. The

circuit should also issue a DATA output concurrent with the first serial data bit, to signal the

start of serial data, as illustrated in the timeline below

Inputs

Outputs

.Az
A«L
AD
b=
T
-1
. B2
= < S = o
[ ! M

(traces between 0 and 1 indicate “don’t care”)

As before, you may assume that the A, bits are valid for at least one cycle, and the LOAD

bit is synchronously asserted for exactly one clock cycle. Define your module as

module p2s (

// system clock

input clk,



input [3:0] A, // Input parallel word

input LOAD, // synchronous load command
output reg DATA=0, // Serial data coming out
output reg Q=0); // Serial data bit

You will simulate your design in the next problem.

. Use EDA Playground to simulate the module you wrote in the previous problem. Once you
create a profile account in EDA Playground

e Under “Tools & Simulations”, select “Icarus Verilog 0.9.7”.

e Select the “Open EPWave after run” radio button.

e Give your project a unique name in the title bar of the window at the bottom.
Load your p2s module in the design.sv window, and dowload the file “ps2_testbench.v” from
the “Files/FPGA Files” directory at the Canvas site and copy it into the testbench.sv window.

Save your project and click “Run”. Once you have things working, submit a screen shot of
the output waveforms.



