
Lab 5: Intro to FPGAs

UC Davis Physics 116B
Rev 2/9/2020

There’s a saying when dealing with complex electronic systems: “If you can make the LED blink,
you’re 90% of the way there.”, so in this lab you will make the LEDs blink on the Alchitry-Au
prototype board. Doing so involves four distinct steps:

• Writing Verilog code to specify the desired logical behavior.

• Constraining the mapping between the internal logic signals and the pins that connect to the
board.

• Compiling your code and generating the configuration (.bit) file.

• Downloading the configuration to Xilinx chip on the Alchitry board (or optionally to the
onboard PROM, to be loaded at startup).

Once you figure out how do do this, it will be very straightforward to generalize your knowledge
to much more complex applications in the remaining labs of this course.

Pre-lab Questions

In this lab, you will make a 24-bit counter and display the state of the bits on 24 LEDs. If we clock
this counter at the full 100 MHz clock rate of the Alchitry-Au onboard clock, at what rate (in Hz)
will the LED corresponding to the MSB flash; that is, how long will it take to count through the
24-range and start over?

In the next step, we will slow the counter down so it counts at a rate of 1 Hz. We will do this
by implementing a separate “delay” counter that counts every clock cycle, and only update the
displayed count when that counter reaches 100 million. In order to count to 100 million, how
many bits to we have to allocate to the delay counter?

The Achitry-Au Prototype Board and Interface Boards

In the next few labs, we’ll be using the following boards, shown in Figure 1

• Alchitry-Au Xilinx Development Board: This board has a Xinlinx Kintex-7 FPGA, a reset
button, 8 display LEDs and the USB-C interface that provides power and connection to the
host computer. The other boards are attached to it via the four connectors.

• Alchitry-Io I/O Board: This board provides a general communication interface: 5 buttons,
24 LEDs, 24 DIP switches, and 4 segment displays.

1



a b c

Figure 1: Prototype boards used in labs: (a) Alchitry-Au Xilinx Kintex-7 prototype board and (b)
Alchitry-Io display board.

Alchitry Labs IDE

Xilinx 
Configuration 

(.bit) file

Xilinx Constraint 
File 

Alchitry Labs 
IDE

Alchitry-Au 
Development 

Board

Xilinx Vivado IDE
HDL Code

Custom 
Breakout 

Board: 
Connectors, 

DACs

Alchitry-Io 
Interface 
Board: DIP 

switches, LEDs, 
segment 
drivers

PC

GUI

Figure 2: Flow of configuration development. The Alchitry Labs program provides the interface
to Vivado, which compiles the configuration scripts to generate the configuration (.bit) file. The
Vivado Lab program then loads this configuration file to the board.

The standard integrated development environment (IDE) for Xilinx chips is called “Vivado”. It’s a
powerful suite of tools, but very complex. Even simple operations like those we’ll be doing in these
labs require multi-step procedures with a significant learning curve. One of the main reasons we
chose the Alchitry boards for this lab is that Alchitry provides a very simplified IDE to configure

2



the Xilinx chip that shelters the user from the complexity of the Vivado suite of tools, and should
allow us to use our time much more efficiently.

Figure 2 illustrates the operation of the program. The user interacts with the Alchitry Labs pro-
gram, which allows them to write HDL modules and to specify pin-constraints in own mnemonic
format. When the “build” button is pressed, the program translates the pin contraints into the raw
pin numbers and format needed by the Vivado program, which then compiles the HDL script in
the background and produces the Xilinx configuration (.bit) file. The download button on the Al-
chitry Labs program will then download the configuration to the Xilinx chip. One can optionally
download the configuration to an onboard PROM, so it will be automatically loaded when the
Alchitry-Au board powers up.

Lab Activities

Getting Started

Figure 3: Default module for a new Alchitry Verilog project.

You will need the pin definitions for this Lab. All the pin definitions can be found in the file
“Alchitry-pins.txt”. If it’s not on the computer desktop, you can download it from the “FPGA
Files” subdirectory of the Files area of the Canvas site.

Start the Alchitry Labs program, and create a new project by selecting “Project→New Project...”
from the menu at the top. Give the project a unique name, so you can return to it in later labs.
Verify that the “Alchitry-Au” is selected as the board, and select “Vivado” for the language. Click
“Create”. This will create the default project shown in Figure 3, which we will overwrite for our
projects. As a first step, “right-click→remove” the following files, as you won’t need them for our
labs:

• reset conditioner.luc

3



• alchitry.acf

Do NOT remove or modify the file “au.xdc” as it contains some global directives and parameters
needed by all labs that use this board.

Connect DIP Switches to LEDs

Figure 4: Simple module to connect the DIP switches to the LEDs.

Figure 5: Top of constraints file for this project.

As a first project, you will simply connect the 24 DIP switches to the 24 LEDs on the Alchitry-Io
board. To do this, modify the au top.v module to match Figure 4. You will also need to tell the

4



program which pins these are c connect to. To do this, create a new constraint file by mousing over
the “Constraints” header to the left, and doing “Right-click→New constraint...” In the dialog box,
give the file a name (do NOT use “au” or “io”) and select the “User constraints” radio button. This
will create a new, empty file with a .acf suffix. Copy and paste the definitions for io dip[23:0] and
io led[23:0] into this file from the “Alchitry-pins.txt” file you downloaded earlier. Note that it will
create and error if you either use a pin you don’t define, or define a pin you don’t use, so only copy
the definitions you need for each step!

One issue with going from the full Vivado suite to the Alchitry Labs program is that the log and
error files end up being a little hard to fine. Luckily, Alchitry has pretty sophisticated syntax
checking, so look at both the .v file and the .acf file to make sure none of the line numbers are
highlighted in red. Once you pass the syntax check, remaining errors are almost always a problem
with the pin definitions, so take time to double-check those as well.

Once you’ve completed the project, compile it and generate the configuration file by clicking the
little hammer icon at the top. This will launch Vivado in the background, initiates the multi-step
process to produce the configuration file, and generates a lot of output at the bottom that scrolls by
too fast to read.

If you were successful, it will display “Finished building project.” in green at the bottom. Oth-
erwise, it will display an error in red and you’ll need to figure out what the problem was. Some
troubleshooting tips can be found in the appendix.

Finally, click on the hollow arrow to download the configuration to the Alchitry board. Verify that
it behaves as expected.

Fast Counter

Figure 6: Top of constraints file for this project.

In this section, you will make a 24-bit counter that will count at the full 100 MHz rate of the
onboard clock. To do this, modify the code as shown in Figure ?? and add the definition of the
clock pin to the constraint file.

Compile and download this configuration. Does it behave as expected? Is the rate consistent with
what you calculated in the pre-lab questions? What is the role of the DIP-switches in this case?

5



Slow Counter

For this activity, you’re on your own. You will slow down the counter so it counts at 1Hz. To do
this, define and extra counter in the module, called “delay”. Inside the “always” block, increment
this count every clock cycle. When it reaches 100 million, increment “count” by 1 and reset “delay”
to 0.

Compile and download this to verify that it works as expected.

Instantiation

Figure 7: Instantiating the counter.

For this part, you will move the counting logic into a separate module, and then “instantiate” that
module in the top level design.

From the Source header at left, do “Right-click→New source...”. Give it a name “slowcounter”
and select the “Verilog source” radio button. Give this an input called “clk” and a 24-bit output
register called “count”. Cut the counting logic out of au top.v and move it into slowcounter.v.
Finally, instantiate slowcounter in the top module, as shown in Figure 7. Why did I have to define
“count” as a wire instead of a register here?

Compile and download this to verify that it works as expected. Once you’ve got it working, click
the solid arrow to download the configuration to the onboard PROM. Unplug the Alchitry board
and plug it back in to verify that this is now the default configuration at startup.

Lab Writeup

For your lab report, include answers to all questions, and a screen shot of the Verilog script for
your final versions of au top.v and slowcounter.v.

Be sure to save your files for use in later labs!

6



Appendix: Troubleshooting

One thing we give up using Alchitry Labs instead of Vivado is that Vivado produces very detailed
error logs that highlight problems in yellow or red. Alchitry Labs dumps output to the console
window, and it’s easy to miss the details of errors if the program fails to compile.

It has a pretty good syntax checker that will find mistakes in basic syntax, as well as missing or
extra pin definitions. When you think you’re ready, click the little “check” button to verify that
your program passes this basic test.

On the other hand, there are a lot of things that the syntax checker can miss. One trick is to select,
copy, and paste the text from the console window into a text editor, so you can search for “ERROR”
and “WARNING”.

Some of the most common errors that get past the syntax-checker are:

• Incorrectly spelled variable names. The syntax-checker will not check this, but you wil get
an “undeclared” error when you compile.

• Putting vector dimensions after the name instead of before it; eg. writing reg A[7:0];

instead of reg [7:0] A;. This is a very common mistake, particularly for people used to
programming in C, and it generates a very confusing error message.

• Using nets (wire, etc) and variables (reg, integer, etc) in the wrong places. Remember that
nets can’t be used on the left hand side of equations in concurrent statements and nets can’t
be used on the left hand side of equations in procedural statements (inside always blocs).

• Wrong pin assignment in the constraint file. This will either generate a “null” assignment
error or a conflict error. This shouldn’t happen if you always copy the pin definitions from
the file that has been provided.

7


