Lab 3: Combinatorics

Physics 116B

Rev. 12/13/2019

Introduction

In this lab, you will construct a 2-bit decoder and a 2 -bit adder circuit using discrete logic gates. The parts you will need and their pin-outs are shown in the Appendix.

2-bit Decoder

Using AND gates and inverters, construct the two-bit digital decoder shown in Figure 1; that is, a device for which the numerical binary input $i=\left(A_{1} A_{0}\right)_{2}$ will cause output Q_{i}, and only that output, to be TRUE (e.g. $A_{1}=1, A_{0}=0 \rightarrow Q_{2}=1$). Use as few devices as possible.

Figure 1: Two-bit decoder
Connect the inputs to the logic switches on the proto-boards and the outputs to the LED indicators.
Verify that that the outputs behave as expected for all combinations of the input bits and fill out a truth table with the state of the four outputs for all possible states of A_{0} and A_{1}.

2-bit Adder with Carry Out

Wire up the following 2-bit adder circuit shown in Figure 2. Connect the inputs to the logic switches on the proto-board and the outputs to the LED indicators.
Fill out a truth table for all 16 combinations of the input switches, and verify that the circuit behaves as expected.
Disconnect the A_{0} bit from the switch and connect it to the TTL function generator. Set bit A_{1} to 0 and B_{0} and B_{1} to 1 . Measure the propagation delay from A_{0} changing state (both high and low) to Q_{0}, Q_{1}, and $C O$

Figure 2: Two-bit adder with carry out.
reaching their final values. Include the appropriate scope traces in your lab report.

Appendix: Chips Used in this Lab

