
Lab 8: FPGA/DAC

UC Davis Physics 116B
Rev 3/7/2019.2

Introduction

In this lab, you will use the skills you’ve acquired with VHDL and the Spartan 3E development
board to experiment with the on-board digital to analog converter (DAC).

Pre-lab Exercises

For this lab, we will use the quad DAC on the Spartan 3E development board. This DAC has four
12-bit DACs, two of which have Vref=3.3V and two of which have Vref=2.5V. The output voltage
of each DAC will be

Vout =
D

212
Vref

=
D

4096
Vref

For each reference voltage, calculate the voltage change associated with the least significant bit
(LSB), as well as the voltage change associated with each of the four most significant bits [11-8].

Files Provided for this Lab

You will be provided with the “DAC SET.vhd” module to convert parallel words into the serial
data to program the on-board DAC, which we discussed in detail in class. You will also be
provided with the “pins.ucf” file to constrain the pin positions1. These files are located in the
Files/Labs/Lab_8 Files area of the course Canvas page, and they will also be available on
USB stick.

Listings of these two files are included in the Appendix of this document. Be sure you understand
them.

Spartan 3E On Board Quad DAC

Figure 1 shows the location of the LT2624 quad DAC, its associated output header, and a schematic
representation of its operation. The chip contains 4 12-bit DACs, two of which have Vref=3.3V

1There are lots of pins to connect, and you’ve already demonstrated you know how to do this.

1

and two of which have Vref=2.5V. Each DAC may be set individually to a different value of D, or
all DACs may be setting simultaneously to the same value of D.

The DAC chip is configured by means of an active low chip select (DAC CS), a serial data line
(SPI MOSI), and a serial data clock (SPI SCK). In addition, an active low reset (DAC CLR) must
be kept high for normal operation! The capability exists to read back the configuration data through
the SPI MISO pin, but we will not do this.

Spartan-3E FPGA Starter Kit Board User Guide www.xilinx.com 69
UG230 (v1.2) January 20, 2011

R

Chapter 9

Digital to Analog Converter (DAC)

The Spartan®-3E FPGA Starter Kit board includes an SPI-compatible, four-channel, serial
Digital-to-Analog Converter (DAC). The DAC device is a Linear Technology LTC2624
quad DAC with 12-bit unsigned resolution. The four outputs from the DAC appear on the
J5 header, which uses the Digilent 6-pin Peripheral Module format. The DAC and the
header are located immediately above the Ethernet RJ-45 connector, as shown in
Figure 9-1.

SPI Communication
As shown in Figure 9-2, the FPGA uses a Serial Peripheral Interface (SPI) to communicate
digital values to each of the four DAC channels. The SPI bus is a full-duplex, synchronous,
character-oriented channel employing a simple four-wire interface. A bus master—the
FPGA in this example—drives the bus clock signal (SPI_SCK) and transmits serial data
(SPI_MOSI) to the selected bus slave—the DAC in this example. At the same time, the bus
slave provides serial data (SPI_MISO) back to the bus master.

Figure 9-1: Digital-to-Analog Converter and Associated Header

6-pin DAC Header (J5)
Linear Tech LTC2624 Quad DAC

SPI_MOSI: (T4)
SPI_MISO: (N10)
SPI_SCK: (U16)
DAC_CS: (N8)
DAC_CLR: (P8)

UG230_c9_01_030906

70 www.xilinx.com Spartan-3E FPGA Starter Kit Board User Guide
UG230 (v1.2) January 20, 2011

Chapter 9: Digital to Analog Converter (DAC)
R

Interface Signals
Table 9-1 lists the interface signals between the FPGA and the DAC. The SPI_MOSI,
SPI_MISO, and SPI_SCK signals are shared with other devices on the SPI bus. The
DAC_CS signal is the active-Low slave select input to the DAC. The DAC_CLR signal is
the active-Low, asynchronous reset input to the DAC.

The serial data output from the DAC is primarily used to cascade multiple DACs. This
signal can be ignored in most applications although it does demonstrate full-duplex
communication over the SPI bus.

Disable Other Devices on the SPI Bus to Avoid Contention
The SPI bus signals are shared by other devices on the board. It is vital that other devices
are disabled when the FPGA communicates with the DAC to avoid bus contention.
Table 9-2 provides the signals and logic values required to disable the other devices.
Although the StrataFlash PROM is a parallel device, its least-significant data bit is shared
with the SPI_MISO signal.

Figure 9-2: Digital-to-Analog Connection Schematics

Header J5

DAC A

12

DAC B

12

DAC C

12

12

SPI_MOSI

DAC_CS

SPI_SCK

DAC_CLR

CS/LD

SDI

SCK

CLR

SDO

SPI_MISO

(N10) (T4)

(U16)

(P8)

(N8)

3.3V

2.5V

A

B

C

D

GND

VCC

REF A

REF B

REF C

REF D

VOUTA

VOUTB

VOUTC

VOUTD

Spartan-3E FPGA

DAC D

LTC 2624 DAC

SPI Control Interface
(3.3V)

UG230_c9_02_021806

Table 9-1: DAC Interface Signals

Signal FPGA Pin Direction Description

SPI_MOSI T4 FPGAÆDAC Serial data: Master Output, Slave Input

DAC_CS N8 FPGAÆDAC Active-Low chip-select. Digital-to-analog
conversion starts when signal returns High.

SPI_SCK U16 FPGAÆDAC Clock

DAC_CLR P8 FPGAÆDAC Asynchronous, active-Low reset input

SPI_MISO N10 FPGAÅDAC Serial data: Master Input, Slave Output

Figure 1: Location of on-board DAC and output header on Spartan 3E Starter Board, including
schematic representation their operation.

You are being provided with the “DAC SET.vhd” module to perform the actual configuration of
the DAC, but it’s important to understand its operation, which we discussed in class.

Table 1: Bit definitions within the 32-bit DAC configuration word.
bits Use Comment
3-0 – Don’t care

15-4 DAC 12-bit DAC setting
19-16 ADDRESS “0000”→ set DAC A

“0001”→ set DAC B
“0010”→ set DAC C
“0011”→ set DAC D
“1111”→ set ALL

23-20 COMMAND We will use COMMAND=“0011”, which will promptly
set the DAC and enable it at the end of the write cycle

31-24 – Don’t care

2

72 www.xilinx.com Spartan-3E FPGA Starter Kit Board User Guide
UG230 (v1.2) January 20, 2011

Chapter 9: Digital to Analog Converter (DAC)
R

The FPGA first sends eight dummy or “don’t care” bits, followed by a 4-bit command. The
most commonly used command with the board is COMMAND[3:0] = “0011”, which
immediately updates the selected DAC output with the specified data value. Following the
command, the FPGA selects one or all the DAC output channels via a 4-bit address field.
Following the address field, the FPGA sends a 12-bit unsigned data value that the DAC
converts to an analog value on the selected output(s). Finally, four additional dummy or
don’t care bits pad the 32-bit command word.

Specifying the DAC Output Voltage
As shown in Figure 9-2, each DAC output level is the analog equivalent of a 12-bit
unsigned digital value, D[11:0], written by the FPGA to the DAC via the SPI interface.

The voltage on a specific output is generally described in Equation 9-1. The reference
voltage, VREFERENCE, is different between the four DAC outputs. Channels A and B use a
3.3V reference voltage and Channels C and D use a 2.5V reference. The reference voltages
themselves have a ±5% tolerance, so there will be slight corresponding variances in the
output voltage.

Equation 9-1

DAC Outputs A and B
Equation 9-2 provides the output voltage equation for DAC outputs A and B. The
reference voltage associated with DAC outputs A and B is 3.3V ±5%.

Equation 9-2

DAC Outputs C and D
Equation 9-3 provides the output voltage equation for DAC outputs A and B. The
reference voltage associated with DAC outputs A and B is 2.5V ±5%.

Equation 9-3

Figure 9-4: SPI Communications Protocol to LTC2624 DAC

310
x xx xx xx xx xx x 9 10 a0 a1 a2 a3 c0 c1 c2 c311876543210

ADDRESSa3 a2 a1 a0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

All

DAC A
DAC B
DAC C
DAC D

1 1 1 1

SPI_MOSI

SPI_SCK

DAC_CS

SPI_MISO

12-bit Unsigned

COMMAND

Don’t Care

UG230_c9_04_021806

msblsb

Don’t Care

DATA

Slave: LTC2624 DAC

Master
Spartan-3E

FPGA

VOUT
D 11:0[]
4 096,

--------------------- VREFERENCE×=

VOUTA
D 11:0[]
4 096,

--------------------- 3.3V 5%±()×=

VOUTC
D 11:0[]
4 096,

--------------------- 2.5V 5%±()×=

LTC
2604/LTC

2614/LTC
2624

13 2604fd

O
PERATIO

N1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C2 C1 C0 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0C3

CS/LD

SCK

SDI

COMMAND WORD ADDRESS WORD DATA WORD

24-BIT INPUT WORD

2604 F02a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C2 C1 C0 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0C3XXXXXXXX

CS/LD

SCK

SDI

COMMAND WORD ADDRESS WORD DATA WORDDON’T CARE

C2 C1 C0 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0C3XXXXXXXXSDO

CURRENT
32-BIT

INPUT WORD
2604 F02b

PREVIOUS 32-BIT INPUT WORD

t2

t3 t4

t1

t8

D15

17SCK

SDI

SDO PREVIOUS D14PREVIOUS D15

18

D14

Figure 2a. LTC2604 24-Bit Load Sequence (Minimum Input Word)
LTC2614 SDI Data Word: 14-Bit Input Code + 2 Don’t Care Bits
LTC2624 SDI Data Word: 12-Bit Input Code + 4 Don’t Care Bits

Figure 2b. LTC2604 32-Bit Load Sequence
LTC2614 SDI/SDO Data Word: 14-Bit Input Code + 2 Don’t Care Bits
LTC2624 SDI/SDO Data Word: 12-Bit Input Code + 4 Don’t Care Bits

	CS

		SPI _MOSI
		SPI _SCK

Figure 2: DAC configuration encoding and time line.

The DAC is configured by means of a 32-bit configuration word, defined in Table 1. Figure 2
illustrates this packed word, as well as the programming sequence. DAC CS goes low, and the 32
bits of the configuration word are asserted onto SPI MOSI, starting with the MSB. While each bit
is valid, a rising edge on SPI SCK clocks it into the DAC chip. After 32-bits have been loaded into
the DAC, DAC CS goes high again. We will always use COMMAND=“0011”, which will cause
the selected DAC to immediately go to the set value at this point.

VHDL Code

Start a new project and define a new VHDL module with the following inputs and outputs:

entity LAB8 is

Port (CLK : in STD_LOGIC; -- On board 50 MHz clock

SW : in STD_LOGIC_VECTOR (3 downto 0); -- On Board slide switches

LED : out STD_LOGIC_VECTOR (7 downto 0); -- On Board LEDs

DAC_CS : out STD_LOGIC; -- Chip select to DAC

SPI_MOSI : out STD_LOGIC; -- Serial Data bit to DAC

SPI_SCK : out STD_LOGIC; -- Serial Clock to DAC

DAC_CLR : out STD_LOGIC; -- DAC clear. MUST BE SET TO ’1’!

J1 : out STD_LOGIC_VECTOR (3 downto 0)); -- General purpose diagnostic pins

end LAB8;

You have been provided with the “DAC SET.vhd” module, but you must prototype it with the

3

following component specification before the “begin” line of the architecture block2:

component DAC_SET is

Port (CLK : in STD_LOGIC;

DAC : in STD_LOGIC_VECTOR (11 downto 0);

ADDRESS: in STD_LOGIC_VECTOR (3 downto 0);

COMMAND : in STD_LOGIC_VECTOR (3 downto 0);

SET : in STD_LOGIC;

BUSY : out STD_LOGIC;

DAC_CS : out STD_LOGIC;

MOSI : out STD_LOGIC;

SCK : out STD_LOGIC);

end component;

In this area, you must also define the DAC, ADDRESS, COMMAND, SET, and BUSY signals,
with the appropriate sizes. The remaining signals from DAC SET could be tied directly to corre-
sponding pins of the main module, but as we’ll discuss below, we want to tie them to two different
outputs, so you should also create the inermediate STD LOGIC signals CS,MOSI, and SCK.

In the concurrent section of the code (after “begin”), you can instantiate the DAC SET module
with

D: DAC_SET port map(CLK,DAC,ADDRESS,COMMAND,SET,BUSY,CS,MOSI,SCK);

You’ll then need to tie CS, MOSI, and SCK to DAC CS, SPI MOSI, and SPI SCK, respecively.

Because the pins on the DAC chip are very small, it’s difficult to look directly at the configuration
signals with an oscilloscope, so in addition to the connections above we’ll tie the following four
signals to the four elements of the J1 vector as well: SET, CS, MOSI, and SCK. This will allow us
to monitor them at the J1 connector on the board, shown in Figure 3.

Now make the following connections:

• Set DAC CLR to ’1’ to prevent the DAC from going into a permanently reset state3.

• Set COMMAND to “0011”. This will cause the DAC output to go to the set value immedi-
ately when DAC CS goes high. Other values would allow it to be, for example, set in one
cycle, and then turned on later.

• Tie LED[3:0] to the ADDRESS[3:0].

• The LED[7:4] to DAC[11:8] (four most significant bits) of DAC setting.

2It might save time to copy the port() part of this directly from the “DAC SET.vhd” file.
3The author learned this the hard way.

4

R

Spartan-3E FPGA
Starter Kit Board
User Guide

UG230 (v1.2) January 20, 2011

J1	User	Connector	

Spartan-3E FPGA Starter Kit Board User Guide www.xilinx.com 123
UG230 (v1.2) January 20, 2011

Six-Pin Accessory Headers
R

Six-Pin Accessory Headers
The 6-pin accessory headers provide easy I/O interface expansion using the various
Digilent Peripheral Modules (see “Related Resources,” page 126). The location of the 6-pin
headers is provided in Figure 15-1, page 115.

Header J1
The J1 header, shown in Figure 15-8, is the top-most 6-pin connector along the right edge of
the board. It uses a female 6-pin 90° socket. Four FPGA pins connect to the J1 header,
FX2_IO<4:1>. These four signals are also shared with the Hirose FX2 connector. The board
supplies 3.3V to the accessory board mounted in the J1 socket on the bottom pin.

Header J2
The J2 header, shown in Figure 15-9, is the bottom-most 6-pin connector along the right
edge of the board. It uses a female 6-pin 90° socket. Four FPGA pins connect to the J2
header, FX2_IO<8:5>. These four signals are also shared with the Hirose FX2 connector.
The board supplies 3.3V to the accessory board mounted in the J2 socket on the bottom pin.

Figure 15-8: FPGA Connections to the J1 Accessory Header

J1

(B4)
FX2_IO1

(A4)
FX2_IO2

(D5) FX2_IO3

(C5)
FX2_IO4

Spartan-3E FPGA

GND

3.3V

UG230_c12_07_022406

Figure 15-9: FPGA Connections to the J2 Accessory Header

J2

(A6)
FX2_IO5

(B6)
FX2_IO6

(E7) FX2_IO7

(F7) FX2_IO8

Spartan-3E FPGA

GND

3.3V

UG230_c12_08_022406

Figure 3: Location, pinouts, and FPGA mapping of the J1 general purpose header.

Once you have created your project and written the outline of your code, you should copy the
“DAC SET.vhd” and “pins.ucf” files to the project directory and “Add Source...” them to your
main VHDL file.

We will now set the DAC in two different ways. In the first part, we will set all the DACs to
a constant value by using the switches to set the highest order bits. In the second part, we will
generate a sawtooth wave by incrementing the DAC setting by one each time we set the DAC.

As an optional third part, you may modify the code to generate a triangle wave instead of a sawtooth
wave.

Setting the DACs to a Constant Value

For this section, tie DAC[7:0] to “00000000”, and DAC[11:8] to the four slider switches. This
effectively turns our 12-bit DACs into 4-bit DACs.

Next, create a process which will test on the rising edge of CLK, and inside that IF block, test on
the BUSY and SET signals. If BUSY=’0’ and SET=’0’, assert the SET bit. In other words, set the
DAC as often as you can.

Compile the code, generate the bit file, and program it to the FPGA. Verify that the four lower
LEDs are all ON (ADDRESS=“1111”), and that the slide switches are reflected in the LED[7:4]
(DAC[11:8]).

Now use the scope to look at the configuration signals on the J1 header (see Figure 3). You can
ground the probes to the “gnd” pins provided on the board. First trigger on the DAC CS pin going
high (i.e. the end of the configuration cycle), and also look at the SET pin. If you wrote your code
correctly, you should see the DAC CS pin going high for two 50 MHz clock cycles, with the SET
pin going high for the second. Verify that this is the case, and for your writeup, draw a timeline
of the (expected) CLK, SET, BUSY, and DAC CS signals to explain why this is so. Your writeup
should also include an image of the scope traces.

Now trigger on the DAC CS pin going low, and set the time scale so that you can see its entire

5

length. The configuration should take 1 clock cycle to set up, followed by 32 serial bits, each of
which takes 2 clock cycles, for a total of 65 50 MHz clock cycles. Verify that this is the length of
time the DAC CS signal remains low.

Using a second scope probe, look at the SPI MOSI data pin. Because COMMAND=“0011”
and ADDRESS=“1111”, you should see six sequential bits always high, while manipulating the
switches should change the state of the four bits immediately after those, and all other bits should
be 0. Start with all switches set to ’0’, then turn them on one at a time and observe whether the
SPI MOSI bit behaves as expected. Include pictures of scope traces with at least two different
switches set.

If all of this looks correct, use the DVM to measure the voltage between ground and the DAC
output pins at header J5 (see Figure 1). Because ADDRESS=“1111”, changing any of the switch
settings should change the output of all four DACs. Verify that this is so.

Now, looking just at the output of DAC A (Vref = 3.3V), measure the amount the voltage changes
when you change the state of each of the four switches, and confirm that the change matches
your predictions from the pre-lab exercises. Your lab write-up should include your predicted and
observed values.

Generating a Sawtooth Wave

In this section, we’ll replace the constant DAC setting with a setting that ramps through all 212

possible settings, and then loops around, generating a sawtooth wave.

First, make the following changes in the concurrent section of your code:

• Eliminate the assignment of the lower 8 DAC bits to “000000”.

• Eliminate the connection of the higher 4 DAC bits to the switches.

• Eliminate the assignment of ADDRESS to “1111” and instead tie the ADDRESS bits to the
switches.

In the process section, create a new variable (between “process” and “begin”) called “dac value”
that is an integer with a range of 0 to 4095, which is initialized to 0. Tie this to the DAC bits with

DAC <= std_logic_vector(to_unsigned(dac_value,12));

and increment it each time you assert the SET signal. Compile the code, generate the bit file and
program it to the FPGA.

Turn all switches ON and verify that all four DACs are producing sawtooth waves. Verify that the
maximum values are what you expect for the AB and CD pairs, based on their respective values
for Vref .

Next, make just one DAC at a time ramp but setting the switches to the values indicated in Table 1,
and verify that none of the others change when you do this.

6

In the last section, you (hopefully) showed that each SET cycle took 65+2=67 cycles of the 50
MHz clock. Based on this, calculate the expected period of the sawtooth wave; i.e. the time it
takes to go through all 4096 values. Verify this matches the period you observe on the scope.

For your lab writeup, include your code and the scope trace of the sawtooth wave.

OPTIONAL: Triangle Wave

If you have time, modify your code to produce a triangle wave instead of a sawtooth wave, by
counting up through all values, then counting down through all values.

7

Appendix: Pin-outs and DAC SET.vhd Routine

8

Page 1/3/Users/prebys/GoogleDrive/Public/DAC_SET/DAC_SET.vhd
Saved: 3/7/19, 11:56:18 AM Printed for: Eric Prebys

--1
-- Company: UC Davis2
-- Engineer: Eric Prebys3
-- 4
-- Create Date: 10:55:47 02/06/2019 5
-- Design Name: DAC_SET6
-- Module Name: DAC_SET - Behavioral 7
-- Project Name: UC Davis P116B FPGA Lab 38
-- Target Devices: xc3s500e-4fg3209
-- Tool versions: ISE 14.710
-- Description: 11
-- Will set the Linear Tech LTC2624 Quad DAC 12-bit DAC on the 12
-- Spartan 3E starter board. It will take 65 clock cycles, following13
-- the synchronous assertion of the SET pin.14
--15
-- IMPORTANT NOTE: In addition to the pins driven by this component,16
-- the DAC_CLR pin (pin P8 on Xilinx Chip) must be driven HI to17
-- prevent the DAC from remaining in a RESET state!18
-- 19
-- Inputs:20
-- CLK - 50MHz onboard clock21
-- DAC - 12-bit DAC setting22
-- ADDRESS - 4-bit address word (0-3-> DAC#, 15-> ALL)23
-- COMMAND - 4-bit command word (usually "0011")24
-- SET - begin set process25
-- Ouputs:26
-- BUSY - setting in progress (active HI)27
-- (tie the following directly to the DAC)28
-- DAC_CS - amp chip select (active LOW)29
-- MOSI - serial data bits30
-- SCK - serial clock, clocked at 1/2 of CLK speed. Ambiently LOW, so31
-- it can be ORed with other SCK drivers32
-- Dependencies: NONE33
--34
-- Revision: 35
-- Revision 0.01 - File Created 2/06/2019 - E.Prebys36
-- Based on AMP_SET37
-- 1.00 2/07/2019 - E.Prebys38
-- Working version. Cleaned up and commented.39
-- Additional Comments: 40
--41
--42
library IEEE;43
use IEEE.STD_LOGIC_1164.ALL;44
use IEEE.NUMERIC_STD.ALL;45

Page 2/3/Users/prebys/GoogleDrive/Public/DAC_SET/DAC_SET.vhd
Saved: 3/7/19, 11:56:18 AM Printed for: Eric Prebys

entity DAC_SET is46
 Port (CLK : in STD_LOGIC;47
 DAC : in STD_LOGIC_VECTOR (11 downto 0);48
 ADDRESS: in STD_LOGIC_VECTOR (3 downto 0);49
 COMMAND : in STD_LOGIC_VECTOR (3 downto 0);50
 SET : in STD_LOGIC;51
 BUSY : out STD_LOGIC;52
 DAC_CS : out STD_LOGIC;53
 MOSI : out STD_LOGIC;54
 SCK : out STD_LOGIC);55
end DAC_SET;56

57
architecture Behavioral of DAC_SET is58

59
-- This is a 32 bit word that encodes the DAC, ADDRESS, and COMMAND words60
signal SETWORD: STD_LOGIC_VECTOR (31 downto 0);61

62
begin63

64
-- Pack the individual words into one 32 bit setword (see manual)65
SETWORD(3 downto 0) <= "0000"; -- Don't care66
SETWORD(15 downto 4) <= DAC; -- 12-bit DAC setting67
SETWORD(19 downto 16) <= ADDRESS; -- 4-bit ADDRESS (0-3=DAC#, 15=ALL)68
SETWORD(23 downto 20) <= COMMAND; -- 4-bit COMMAND (usually "0011")69
SETWORD(31 downto 24) <= "00000000"; -- Don't care70

71
process(CLK,SET)72
-- This state machine is ambiently in the IDLE state, with 73
-- DAC_CS HI, BUSY LOW, and SCK LOW 74
--75
-- In response to a SET, it will assert a BUSY HI and DAC_CS LOW76
-- It will then go through 32 2-CLK cycles of LOW,HI,77
-- referring to the SCK state. the appropriate DAC 78
-- bit will be asserted on MOSI at state LOW and held through79
-- HI, starting with the MSB. After 32 bits, it will return to IDLE.80
-- 81
type state_type is (IDLE,LOW,HI);82
variable state: state_type;83

84
variable bit_index: integer range 0 to 31 := 31;85
begin86
 if rising_edge(CLK) then87
 case state is88

 when IDLE => -- Ambiently keep SCK and BUSY low, DAC_CS hight89
 SCK <= '0';90

Page 3/3/Users/prebys/GoogleDrive/Public/DAC_SET/DAC_SET.vhd
Saved: 3/7/19, 11:56:18 AM Printed for: Eric Prebys

 BUSY <= '0';91
 DAC_CS <= '1';92

 if SET = '1' then -- Set BUSY high, DAC_CS low, initialize bit_index93
 BUSY <= '1';94
 DAC_CS <= '0';95

 bit_index := 31; -- MSB first96
 state := LOW;97
 end if;98

 when LOW => -- SCK low99
 SCK <= '0';100

 state := HI;101
 MOSI <= SETWORD(bit_index);102
 when HI => -- SCK edge clocks in data103
 SCK <= '1';104

 if bit_index > 0 then105
 state := LOW;106

 bit_index := bit_index -1;107
 else 108
 state := IDLE;109
 end if;110

 end case;111
 end if;112

113
end process;114

 115
116

end Behavioral;117
118
119

