P116B Homework 2

Due 2/1/2019

1. Consider the following logic circuit:

(a) Fill out a truth table for all 16 combinations of the inputs.
(b) Write a logical expression for this circuit, including a logical representation of each individual gate. Do not use the exclusive OR operator (\oplus)
(c) Use De Morgan's rule to reduce this to an expression in which any inversions operate only on individual terms.
(d) Design a functionally equivalent circuit using only NAND gates. (Note: It might take quite a few)
2. H\&H 10.13
3. Write a truth table for a "full-subtractor" for calculating the $i^{\text {th }}$ bit of $D=X-Y$, where B_{i} is a request to borrow from bit $i+1$ to bit i.

B_{i-1}	X_{i}	Y_{i}	D_{i}	B_{i}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

4. Solve the following problems by converting the numbers to binary and solving with twos complemement arithmetic. For the whole numbers, use 8-bit signed integers, and for the numbers with fractions, use fixed-point arithmetic with 8 bits for the fractional part and 16 bits total. Converty back to decimal and verify that your answers are correct.
(a) $65+32$
(b) $19-41$
(c) $12.35+57.6$
(d) $55.2-74.11$
