P116B Homework 2

Due 2/1/2019

1. Consider the following logic circuit:

- (a) Fill out a truth table for all 16 combinations of the inputs.
- (b) Write a logical expression for this circuit, including a logical representation of each individual gate. Do *not* use the exclusive OR operator (\oplus)
- (c) Use De Morgan's rule to reduce this to an expression in which any inversions operate only on individual terms.
- (d) Design a functionally equivalent circuit using only NAND gates. (Note: It might take quite a few)

2. H&H 10.13

3. Write a truth table for a "full-subtractor" for calculating the i^{th} bit of D = X - Y, where B_i is a request to borrow from bit i + 1 to bit i.

	B_{i} B_{i-1}					
<i>X</i> :	101	1	0011			
<i>Y</i> :	-00	0	1100			
D:						
		i	-			

B_{i-1}	X_{i}	Y_{i}	D_{i}	$B_{_{i}}$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

- 4. Solve the following problems by converting the numbers to binary and solving with twos complement arithmetic. For the whole numbers, use 8-bit signed integers, and for the numbers with fractions, use fixed-point arithmetic with 8 bits for the fractional part and 16 bits total. Converty back to decimal and verify that your answers are correct.
 - (a) 65 + 32
 - (b) 19 41
 - (c) 12.35 + 57.6
 - (d) 55.2 74.11