P116B Homework 1

Due 1/18/2019

1. Analog Computing. Consider an object thrown straight upward with an initial vertical velocity v_{0} from an initial height $h(0)=0$

We will use the circuit below to do an analog calculation of the altitude as a function of time.

V_{0} is fixed at $V_{0}=k_{0} v_{0}$, where v_{0} is the initial upward velocity. All $R \mathrm{~s}$ are equal and all $C \mathrm{~s}$ are equal. Assume all capacitors are initially discharged.
(a) Write an expression for the output $V_{\text {out }}(t)$, in terms of k_{0}, V_{0}, R, C, and V_{g}.
(b) Based on this, write expressions for k_{1} and V_{g}, such that $V_{\text {out }}=k_{1} h(t)$, in terms of k_{0}, R, C, and g, where g is the (positive) deceleration of gravity, as shown. Be careful with signs!
(c) Sketch a modified circuit with one component replaced (i.e. swap an R with a C or a C with an R), such that $V_{\text {out }}=k_{1} v(t)$, where $v(t)$ is the vertical velocity as a function of time, rather than height. Write and expression for k_{1} in terms of k_{0}, R, and C. Again, be careful with signs.
2. Non-linear analog computing. In class, we discussed the design of an analog multiplication circuit. Based on this design, design a circuit for which

$$
v_{\text {out }} \propto v_{\text {in }}^{2}
$$

Include the correction for any linear terms. Design this using four ideal op-amps, and several diodes and resistors. Express all resistances in terms of a fundamental resistance R.
3. H\&H 7.2

