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Introduction

As we discussed in class, Butterworth filters are a class of filters characterized by a transfer function
with a magnitude

|g(f)| = 1√
1 +

(
f
f0

)2n
where f0 is the 3dB cutoff frequency and n is the order of the filter. In this lab, you will build and
test first, second, and third order Butterworth filters.

First Order Butterworth Filter (Low-pass RC Filter)

A first order Butterworth filter is just a low pass RC filter, so for this section, you will simply repeat
a measurement from last quarter by constructing the following simple circuit.

Use R = 1.5kΩ and C = .01µF (10nF). For your write-up, show that in s-space, the transfer
function is given by

g(s) =
1

1 +
(

s
ω0

)
where ω0 = 1/(RC), and that the magnitude of the frequency response is therefore

|g(f)| = 1√
1 +

(
f
f0

)2
where f0 = 1/(2πRC). Drive the circuit with a sine wave from the function generator, with an
amplitude of 10Vpp.
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Calculate the -3dB frequency f0 [Hz], then measure it by finding the frequency at which the peak-
to-peak voltage falls to 1/

√
2 of its low frequency value. It should be within 5-10% of your

calculation, given the precision of the parts we’re using.

Once you have determined f0, then hold the input amplitude fixed and measure the output ampli-
tude for the following frequencies:

f =

[
f0
10
,
f0
2
, f0, 2f0, 10f0

]
Use the cursors on the oscilloscope to get as accurate a measurement of the peak-to-peak voltage
as you can at each frequency. As a quick check, recall that we showed in class that the gain at
f = 10f0 should be −20n dB, where n is the order of the Butterworth filter. Is it?

Second Order Butterworth Filter

We showed in class that a second-order Butterworth filter should have the following poles in the
s-plane

which give a transfer function of the form

g(s) =
1

s2 +
√

2s+ 1

As shown in the Appendix (and in class), the following circuit
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has the transfer function
g(s) =

A(
s
ω0

)2
+ (3− A)

(
s
ω0

)
+ 1

where ω0 = 1/(RC) and A is the gain of the op amp circuit, given by

A = 1 +
R2

R1

Construct the circuit using the LM741 op amp, and the same R and C values from the first section.
The pin-outs for the LM741 are shown below. Use +15V and -15V for the power levels. If you
observe any high frequency oscillations, you may need to put .1µF capacitors from the power pins
to ground, as close to the chip as possible.

Use a 3.9 kΩ resistor for R1, and pick a value of R2 to make the coefficient of s as close to
√

2 as
possible (i.e set the gain to A = 3−

√
2).

Use a very low frequency signal (∼10 Hz) to verify that A has the correct value. As in the first
section, measure f0 by finding the frequency at with the amplitude falls to the low frequency value
divided by

√
2. Once you have done this, measure the gain over the same range of frequencies as

in the first section.

Note, unlike the passive filter, there will be an overall gain to this circuit, so decibels are calculated
using |g(f)|/A|, where A is your measured value. Verify that the magnitude of the response
function has the form

|g(f)| ∝ 1√
1 +

(
f
f0

)4
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Third Order Butterworth Filter

A third order Butterworth filter has three poles in the s-plane

and is described by a transfer function of the form

g(s) =
1

(s2 + s+ 1) (1 + s)

Construct this filter by adding the first order RC filter of the first section to the second order filter
from the second section. Replace R2 with a value that will give the correct coefficient for s in the
quadratic term (hint: set A = 3− 1). Put the first order filter after the second order filter (why?).

Repeat the measurements you made in the second section, and verify that the magnitude of the
response function has the form

|g(s)| ∝ 1√
1 +

(
f
f0

)6
For your lab report, plot the response of all three filters on the same plot as dB vs. f/f0, where f0
is your measured value for the -3dB frequency in each case. Use a log scale for the frequency axis.
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Appendix: Second Order Active FIlter

To calculate the transfer function of the following circuit

we apply the current sum rules at points 1 and 2

Vin − V1
R

+
Vout − V1

1
sC

+
V2 − V1
R

= 0→ Vin − (2 + sRC)V1 + V2 + sRCVout = 0

V2 − V1
R

+
V2
1
sC

= 0→ V1 = (1 + sRC)V2

Substituting (1 + sRC)V2 for V1 in the first equation gives

Vin = [(2 + sRC)(1 + sRC)− 1]V2 − sRCVout
We now recognize that the final stage is just a non-inverting op-amp circuit, with a gain of A =
(1 +R2/R1), so we substitute Vout/A for V2, and expand the polynomial to get

Vout =
A

(sRC)2 + (3− A)sRC + 1
Vin

If we define a normalized variable

s̃ ≡ s

ω0

where ω0 = 1/(RC), then this becomes

Vout =
A

s̃2 + (3− A)s̃+ 1
Vin

This circuit is a powerful tool in building filters, because we can tune then the linear coefficient of
s by simply adjusting the gain of the last stage, thereby placing a pair of complex poles wherever
we want.

In the particular case of Butterworth filters, the real part of the complex pole pairs always lies
between -1 and 0, meaning the linear coefficient in the denominator will be between 0 and 2, so A
will always be between 1 and 3. Such a gain can always be generated by a value of R2 between 0
and 2R1. Thus, we can use a series of these circuits to build a Butterworth filter to any order, with
odd orders requiring the addition of a single RC stage to generate the real pole.
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