
Copyright c© February 15, 2018, David Doty

Homework 2 – ECS 289, Winter 2018

Required problems

1. Composition. Recall that the following CRC with input species X1, X2 and output species
Y stably computes y = max(x1, x2):

X1 → Y + W1

X2 → Y + W2

W1 + W2 → K

K + Y → ∅

And the following CRC with input species Y,X3 and output species Z stably computes
z = min(y, x3)

Y + X3 → Z

(a) Show that the CRC obtained by simply combining the above 5 reactions, with input
species X1, X2, X3 and output species Z, does not stably compute z = min(max(x1, x2), x3).

(b) Design a CRC that stably computes z = min(max(x1, x2), x3).

2. Leader election. Consider the following CRC, which stably computes f(x) = 1

X → Y

2Y → Y

(a) Design a leaderless CRC that stably computes f(x) = 2, in which every reaction has at
most two reactants and two products.

(b) Describe how to generalize the previous CRC to produce, for each k ∈ N, a leaderless
CRC that stably computes the function f(x) = k, in which every reaction has at most
two reactants and two products.

3. Fast stable computation. Design a CRC that stably computes f(n1, n2) = n2 if n1 > 0
and f(n1, n2) = 0 otherwise. It should reach a stable configuration in expected time O(log n),
where n = n1 + n2, and the volume is n.

4. Chemical caucusing. Imagine we have two candidates, B and H, being voted on by
n ∈ Z+ caucus-goers. If B and H supporters encounter each other, one becomes undecided.



Undecided voters are swayed by decided voters:

B + H → B + U

B + H → H + U

B + U → 2B

H + U → 2H

I lived in Iowa for 12 years, and this is a mostly accurate summary of how the caucus works.

(a) Show that for any initial configuration i with ‖i‖ = n and i(B) + i(H) > 0, for all c such
that i =⇒ c, there is a terminal configuration o such that c =⇒ o and either o(B) = n
or o(H) = n. That is, the CRN is guaranteed eventually to reach a stable consensus.

(b) Deriving how the expected time scales as a function of n is remarkably difficult. (Or,
there is a short, elegant proof that has not yet been discovered.)

Run simulations for different initial configurations and compute the time to stabilize to
a consensus.1 How does the time scale with different initial population sizes, and how is
it affected by different initial distributions of B, H, and U?

Optional problems

You don’t have to do these, but I think they are interesting to think about.

1. Combining function and predicate computation. Design a CRC that stably computes
the function

f(x1, x2) =

{
x1, if x1 ≥ x2;
0, otherwise.

2. Impossibility of stable multiplication. I claimed in class that no non-semilinear set or
function can be stably decided/computed by a CRN. In this problem you will use one of these
facts to prove the other.

You may assume that no CRD stably decides the set
{

(n1, n2) ∈ N2
∣∣ n1 = (n2)2

}
. Use

this fact to show that no CRC stably computes the function f(n1, n2) = n1 · n2.

3. Reachability versus fair executions. We observed that the definition of stable computa-
tion did not say that a CRC will stabilize to the correct answer, merely that it always could
(using the reachability relation =⇒ to define what could happen). We then proved that a
CRC stably computing a function under the reachability definition, when simulated under
the kinetic model, actually will stabilize to the correct output with probability 1. Now we
discuss an alternate nonprobabilistic way to formalize that the CRC will stabilize to the cor-
rect output. It defines “fair” executions and requires that every fair execution do the correct
thing.

1Since the CRN has nothing but 2-reactant/2-product/unit-rate-constant reactions, you don’t have to worry about
simulating the full chemical kinetic model with all its exponential random variables. Just pick a pair of molecules
at random to “interact”. The interaction counts whether the molecules react or not, e.g., if you pick two copies of
B, this counts as an interaction even though there is no reaction B + B → . . .. Count how many interactions are
needed to stabilize, divide this by n, and call this the “time” (since we expect about n interactions per unit time in
a solution with volume n and n molecules).

2



A configuration c is terminal if no reaction is applicable to it. A finite execution E =
(c0, . . . , ck) is fair if ck is terminal, and an infinite execution E = (c0, c1, . . .) is fair if, for all
c, if there are infinitely many i ∈ N such that ci =⇒ c, then there are infinitely many j ∈ N
such that cj = c. In other words, every configuration that is infinitely often reachable in E is
infinitely often reached.2

Show that a CRC C = (Λ, R,Σ, Y, s) stably computes a function f under the definition given
in lecture if and only if, for every valid initial configuration i ∈ NΛ, every fair execution
E = (i, . . .) contains an output stable configuration o ∈ NΛ such that o(Y ) = f(i � Σ).

4. Majority wins. In problem 4, show that if the initial configuration is i = {0.51n B, 0.49n H},
then for sufficiently large n, with probability at least 99%, the CRN reaches the configuration
{nB}. That is, the initial majority probably wins.

5. Consuming output. Some CRCs, such as X → 2Y and 2X → Y , only produce the output
species. Others, such as X1 → Y , X2 + Y → ∅ to compute subtraction, do consume the
output species.

(a) Show that if f : Nk → N is not a monotone function, then any CRC stably computing f
must consume the output species Y , i.e., must have a reaction where Y ’s stoichiometric
coefficient as a reactant exceeds its stoichiometric coefficient as a product (e.g., X+Y →
A or 3Y → 2Y ).

(b) Show that any leaderless CRC stably computing f(x1, x2) = max(x1, x2) must consume
the output species Y .

2This concept is borrowed from distributed computing. A distributed algorithm runs over a network in which the
order in which various nodes will receive messages from each other is unknown. It would be too restrictive to imagine
that the algorithm should work under any schedule of message delivery. For example, there there are three nodes
a, b, c, if the scheduler always delivers messages to a and b before it delivers them to c, and if every message received
by a triggers an immediate response message to b and vice versa, then c will be “starved” under this unfair schedule.

There are many definitions of fair schedules in CRNs. This is the one most commonly used. Others look different
but are equivalent; for instance, requiring that if there are infinitely many i ∈ N such that ci =⇒1 c (i.e., ci can reach
to c by a single reaction), then there are infinitely many j ∈ N such that cj = c. Others that look reasonable actually
define a weaker notion; for instance, requiring that every reaction that is infinitely often applicable is infinitely often
applied. By “weaker”, we mean that more executions are fair under the latter definition, and some of the new
executions fail to get the answer correct.

3


