The |
the |
%ﬂ? i
com
ecot
lived
nol
stor
CxXpr

carl
frrog
and
&ﬂ.ﬁ |
Clos
itive
wou
finm

18 I
pic de
ol «
ente
sona

$0 nl

,

LIFE IN CODE LIFE IN CO§FE IN CODE LIFE IN CODE

A Personal History of Technology

ELLEN ULLMAN ELLEN ULLM M__.mz ULLMAN ELLEN ULLMAN

MCD @ FARRAR, STRAUS AND GIROUX | NEW YORK

of ¢
tec

The
the

fen
com
o
livec
nolc
stor

carly
prog
and
gem
Clos
itive
wou

fina

is n
gic
of
ente
son:
50 1

our

the

Outside of Time

REFLECTIONS ON THE PROGRAMMING LIFE

1994

I
People imagine that programming is logical, a process like fixing a
clock. Nothing could be further from the truth. Programming is
more like an illness, a fever, an obsession. It’s like riding a train and
never being able to get off.

The problem with programming is not that the computer isn’t
logical—the computer is terribly logical, relentlessly literal-minded.
Computers are supposed to be like brains, but in fact they are idiots,
because they take everything you say at face value. [can say to a tod-
dler, “Are yew okay tewday?” and the toddler will understand. But
it’s not possible for a programmer to say anything like that to a

4 | LIFEIN CODE

computer. The compiler complains; finds a syntax error; won'’t trans
late your program into the zeros and ones of the machine. It’s no
that a program can’t be made to act as if it understands—it can. Bu

that’s just a trick, a trick of the code.
When you are writing code, your mind is full of details

programming.

A computer program is an algorithm that must be written down
in order, in a specific syntax, in a strange language that is only par-
tially readable by regular human beings. To program is to translate
between the chaos of human life and the line-by-line world of com-

puter language.

You must not lose your own attention. As the human-world knowl-
edge tumbles about in your mind, you must keep typing, typing. You
must not be interrupted. Any break in your listening causes you to
lose a line here or there. Some bit comes; then—oh no—it’s leaving,
please come back. It may not come back. You may lose it. You will cre-
ate a bug and there’s nothing you can do about it.

Every single computer program has at least one bug. If you are a
programmer, it is guaranteed that your work has errors. These errors
will be discovered over time, most coming to light after you’ve moved
on to a new job. But your name is on the program. The code library

software keeps a permanent record card of who did what and when.
At the old job, they will say terrible things about you after you've gone.
This is normal life for a programmer: problems trailing behind you
through time, humiliation in absentia.

People imagine that programmers don’t like to talk because they

, mil-
lions of bits of knowledge. This knowledge is in human form, which
is to say rather chaotic, coming at you from one perspective, then
another, then a random thought, then something else important,
then the same thing with a what-if attached. For example, try to
think of everything you know about something as simple as an
invoice. Now try to tell an alien how to prepare one. That is

OUTSIDEOFTIME | 5

fer machines to people. This is not completely true. Programmers
talk because they must not be interrupted.

This inability to be interrupted leads to a life that is strangely
ssynchronous with the one lived by other human beings. It’s better
end email than to call a programmer on the phone. It’s better to
¢ a note on the chair than to expect the programmer to come to a
mieeting. This is because the programmer must work in mind-time
bt the phone rings in real time. Similarly, meetings are supposed to
luke place in real time. It’s not just ego that prevents programmers
Irom working in groups—it’s the synchrony problem. To synchronize
with other people (or their representation in telephones, buzzers,
and doorbells) can only mean interrupting the thought train. Inter-
fuptions mean certain bugs. You must not get off the train.

I used to have dreams in which I was overhearing conversations
I had to program. Once, I had to program two people making love. In
iy dream they sweated and tumbled while I sat with a cramped hand
writing code. The couple went from gentle caresses to ever-widening
passions, and I despaired as I tried desperately to find a way to ex-
jress the act of love in the computer language called C.

.

I once had a job where I didn’t talk to anyone for two years. Here was
the arrangement: I was the first engineer hired by a startup software
company. In exchange for large quantities of stock that might be
worth something someday, I was supposed to give up my life.

[sat in a large room with two recently hired engineers and three
Sun workstations. The fans of the machines whirred; the keys of
the keyboards clicked. Occasionally, one or another of us would
grunt or mutter. Otherwise, we did not speak. Now and then, I would
have a temper outburst in which I pounded the keyboard with my
fists, setting off a barrage of beeps. My colleagues might look up but
never said anything about this.

6 | LIFEINCODE OUTSIDE OF TIME | 7

Once a week, I had a five-minute meeting with my boss. I liked coming. When I was hired I'd signed an agreement: the price of leav-

him; he was genial; he did not pass on his own anxieties about work- ing, before five years was the return of the stock. Still, I didn’t feel free

ing in a startup. At this meeting I would routinely tell him I was on or virtuous. I put the check in my pocket, then got drunk at my fare-

schedule. Since being on schedule is a very rare thing in software well party.

engineering, he would say, “Good, good, see you next week.” Five years later, the company went public. For the engineers

I remember watching my boss disappear down the row of cubby- who'd stayed, the original arrangement was made good: in exchange

hole partitions. He always wore clothes that looked exactly the for giving up seven years of their lives, they became very, very

same: khaki pants and a checked shirt of the same pattern. So, week wealthy. As for me, I bought a car. A red one.

to week, the image of his disappearing down the row of partitions
.

Frank was thinking he had to get closer to the machine. Somehow,
he'd floated up. Up from memory heaps and kernels. Up from file

remained unchanged. The same khaki pants, the same pattern in the
checked shirt. “Good, good, see you next week.”

Real time was no longer compelling. Days, weeks, months, and

years came and went without much physical change in my surround- systems. Up through utilities. Up to where he was now: an end-user

ings. Surely I was aging. My hair must have grown, I must have cut it; query tool. Next thing, he could find himself working on general led-

it must have grown again. Gravity must have been working on my gers, invoices—God—financial reports. Somehow, he had to get closer

to the machine.

sedentary body, but I didn’t notice. I only paid attention to my back
Frank hated me. Not only was I closer to the machine, I had won

and shoulders because they seized up on me from long sitting. Later,

after 1 left the company, there was a masseuse on staff. That way, the coin toss to get the desk near the window. Frank sat in full view

even the back and shoulders could be soothed—all the better to keep of the hallway, and he was farther from the machine.

you in your seat. Frank was nearly forty. His wife was pregnant. Outside, in the

What was compelling was the software. I was making something parking lot (which he couldn’t see through my window), his new

out of nothing, I thought, and I admit the software had more life station wagon was heating up in the sun. Soon he’d have a kid, a wife

for me than my brief love affair, my friends, my cat, my house, my who had just quit her job, a wagon with a child carrier, and an end-

neighbor who was stabbed and nearly killed by her husband. T was user query tool. Somehow, he had to get closer to the machine.

creating (“creating”—that is the word we used) a device-independent Here are the reasons Frank wanted to be closer to the machine:

interface library. One day, I sat in a room by myself surrounded by The machine means midnight dinners of Diet Coke. It means un-

washed clothes and bare feet on the desk. It means anxious rides

computer monitors from various manufacturers. I remember look-
through mind-time that have nothing to do with the clock. To work

ing at the screens of my companions and saying, “Speak to me.”

I completed the interface library in two years and left the com- on things used only by machines or other programmers—that’s the

pany. On my last day on the job, the financial officer gave me a check: key. Programs and machines don'’t care how you live. They don’t care

it was a payment to buy back most of my stock. I knew this was when you live. You can stay, come, go, sleep, or not. At the end of the

i

Shi

B | LIFEIN coDE

project looms a deadline, the terrible place where you must get off
the train. But in between, for years at a stretch, you are free: free
from the obligations of time.

To express the idea of being “closer to the machine,” an engineer
refers to “low-level code.” In regular life, “low” usually signifies
something bad. In Programming, “low” is good. Low is better. |

If the code creates programs that do useful work for regular
human beings, it is called “higher.” Higher-level programs are called
“applications.” Applications are things that people use. Although
it would seem that usefulness by people would be a good thing, from

a programmer’s point of view, direct people-use is bad. If regular
people, called “users,” can understand the task accomplished by
your program, you will be paid less and held in lower esteem. In the

regular world, the term “higher” may be better, but in programming
higher is worse. High is bad.

If you want money and prestige, you need to write code that only
machines or other programmers understand. Such code is “low.” It’s
best if you write microcode, a string of zeros and ones that only a pro-
cessor reads. The next best thing is assembler code, a list of instruc-
tions to the processor, but readable if you know what you're doing. If
you can’t write microcode or assembler, you might get away with
writing in the C language or C++. C and C++are really sort of high,
but they’re considered “low.” So you still get to be called a “software
engineer.” In the grand programmer scheme of things, it’s vastly
better to be a “software engineer” than a “programmer.” The difference
is thousands of dollars a year and a potential fortune in stock.

My office mate Frank was a man vastly unhappy in his work. He
looked over my shoulder, everyone’s shoulder, trying to get away from
the indignity of writing a program used by normal human beings.
This affected his work. His program was not all it should have been,

and for this he was punished. His punishment was to have to talk to
regular people.

OUTSIDEOFTIME | 9

Frank became a sales-support engineer. Ironically, working in
snles and having a share in bonuses, he made more money. But he got
no more stock options. And in the eyes of other mzmw::mﬁ.m, m.Bsw S.mm
as “high” as one could get. When asked, we said, “Frank is now in

sales.” This was equivalent to saying he was dead.

”h,“..___,”.e.nrmmm don’t worry about forced eugenics. I learned this from a
real techie in the cafeteria of a software company. .

The project team is having lunch and discussing how long it
would take to wipe out a disease inherited recessively on the X &.:o-
imosome. First come calculations of inheritance probabilities. O~.<m=
a population of a given size, one of the engineers arrives at a wipe-
out date. Immediately another suggests that the date could be moved
forward by various manipulations of the Ermn:m:n.m patterns. For
mple, he says, there could be an education campaign. .
The six team members then fall over one another with further
suggestions. They start with rewards to discourage carriers from
breeding. Immediately they move to fines for those s.&o: reproduce
the disease. Then they go for what they call “more effective” measures:
Jail for breeding. Induced abortion. Forced sterilization.

Now they’re hot. The calculations are flying. Years and years fall
from the final doom-date of the disease. .)

Finally, they get to the ultimate solution. “It’s mnam_mr&o:wma.
someone says. “Just kill every carrier.” Everyone responds to this last
suggestion with great enthusiasm. One generation and—bang—the

disease is gone. o

Quietly, I say, “You know, that’s what the Nazis did.

‘They all look at me in disgust. It’s the look boys give a girl who
has interrupted a burping contest. One says, “This is something my
wife would say.” -

When he says “wife,” there is no love, warmth, or goodness in it.

Pty

Date
Ship

10 | LIFEIN CODE

Still, T persist. “It started as just an idea for the Nazis, too, yo
know.”

The engineer makes a reply that sounds like a retch. “This is ho
I'know you're not a real techie,” he says.

then five years of being a consultant, the director is the first perso:
to compliment me on what I am wearing to the interview.
It takes me a while, but I soon see I must forget all the usual as

Paolo’s Italian-ness has been replaced, outer-space-pod-like, with
some California New Age, Silicon Valley engineering creature. H
eats no fat. He spoons tofu-mélange stuff out of a Tupperware con
tainer. Everything he does comes in response to beeps emitted from
his UNIX workstation: he eats, goes to meetings, goes rollerblading
in the parking lot, buys and sells stock, calls his wife solely in re-
sponse to signals he has programmed into his calendar system. (The
clock on his wall has only the number twelve on it.) Further, Paolo
swears he has not had a cold since the day he decided that he would
always wear two sweaters. Any day now, I expect to see him get out
of his stock-option Porsche draped in garlic.

I know that Paolo has been replaced because I have met his wife,

OUTSIDEOFTIME | T

We are at a team beer-fest in the local programmer hangout on a
I'riday evening. It’s full of men in tee shirts and jeans. Paolo’s wife
andl I are the only people wearing makeup. She looks just the way
| expect a no-longer-young Italian woman to look—she has taken
time with her appearance, she is trying to talk to people. Across the
swill of pitchers and chips glopped with cheesy drippings, she eyes
me hopefully: another grown-up woman. At one point, she clucks at
Ifaolo, who is loudly describing the effects of a certain burrito. “The
unly thing on earth that instantly turns a solid into a gas,” he says.

‘The odder Paolo gets, the more he fits in with the research team.
(e engineer always eats his dessert first (he does this conscien-
tiously; he wants you—dares you—to say something; you simply
don't). Another comes to work in something that looks suspiciously
like his pajamas. To join this project, he left his wife and kids back
vast. He obviously views the absence of his family as a kind of license:
he has stopped shaving and (one can’t help noticing) he has stopped
washing on a regular basis. Another research engineer comes to work
in shorts in all weather; no one has ever seen his knees covered.
Another routinely makes vast changes to his work the day before
deadlines; he is completely unmoved by any complaints about this
practice. And one team member screens all email through a careful
filter, meaning most mail is deposited in a dead-letter file. This last
engineer, the only woman permanently on the project, has outdone
everyone on oddness: she has an unlisted work phone. To reach her,
you must leave a message with her manager. The officially sanctioned
asynchrony of the unlisted phone amazes me. I have never seen any-
ihing like it.

‘These research engineers can be as odd as they like because they are
very, very close to the machine. At their level, it is an honor to be odd.
Strange behavior is expected, it’s respected, a sign that you are intelli-
gent and as close to the machine as you can get. Any decent software
engineer can have a private office, come and go at all hours, exist out of

12 | LIFEIN CODE

normal time. But to be permanently and sincerely eccentric—this is
something only a senior research engineer can achieve.

In meetings, they behave like children. They tell each other to
shut up. They call each other idiots. They throw balled-up paper. One
day, a team member screams at his Korean colleague, “Speak English!”
(A moment of silence follows this outburst, at least.) It’s like drop-
ping in at the day-care center by mistake.

They even behave like children when their Japanese sponsors
come to visit. The research is being funded through a chain of
agencies and bodies that culminates in the Board of Trade of Japan.
The head of the sponsoring department comes with his underlings.
They all wear blue suits. They sit at the conference table with their
hands folded neatly in front of them. When they speak, it is with the
utmost discretion; their voices are so soft, we have to lean forward to
hear. Meanwhile, the research team behaves badly, bickers, has the
audacity to ask when they’ll get paid.

The Japanese don’t seem to mind. On the contrary, they appear
delighted. They have received exactly what their money was intended
to buy. They have purchased bizarre and brilliant Californians who
can behave any way they like. The odd behavior reassures them: Ah!
These must be real top-rate engineers!

VL.

We are attending conventions. Here is our itinerary: we will be
traveling closer and closer to the machine. Our journey will be like
crossing borders formed by mountain ranges. On the other side,
people will be very different.

We begin “high,” at a conference of computer trainers and tech-
nical writers. Women are everywhere. There is a great deal of nail polish,
deep red, and briefcases of excellent leathers. In the cold, conditioned
air of the conference hall drifts a faint, sweet cloud of perfume.

Next we travel to Washington, D.C., to an applications develop-

OUTSIDE OF TIME | 13

ment conference, the Federal Systems Office Expo. It is a model of
cultural diversity. Men, women, whites, blacks, Asians—all qualified

applicants are welcome. Applications development (“high-level,” low-
status, and relatively low-paying) is the civil service of computing.

Now we move west and lower. We are in California to attend a
meeting of SIGGRAPH, the graphics special-interest group of the
Association for Computing Machinery (ACM). African Americans
have virtually disappeared. Young white men predominate, with
many Asians among them. There are still some women. This is the
indication—the presence of just a few women—that we are getting ever
closer to the heart of the machine.

From here we descend rapidly into the deep, low valleys of pro-
gramming. We go first to an operating-systems interest group of
the ACM. Then, getting ever closer to hardware, we attend a conven-
tion of chip designers. Not a female person in clear sight. If you look
closely, however, you might see a few young Chinese women sitting
alone—quiet, plainly dressed, succeeding at making themselves
invisible. For these are gatherings of young men. This is the land of
lee shirts and jeans, the country of perpetual graduate-studenthood.

Later, at a software-vendor developers conference, company engi-
neers proudly call themselves “barbarians” (although they are not
really as “low” as they think they are). In slides projected onto huge
screens, they represent themselves in beards and animal skins, holding
spears and clubs. Except for the public-relations women (the scent of
Chanel N° 5 rising from the sidelines), there is only one woman (me).

A senior engineer once asked me why I left full-time engineering
for consulting. At the time, I had never really addressed the question,
and I was surprised by my own answer. I muttered something about
feeling out of place. “Excuse me,” I found myself saying, “but I'm
afraid I find the engineering culture very teen-age boy puerile.”

This engineer was a brilliant man, good-hearted, and unusually

literate for a programmer. I had great respect for him, and I really

14 | LIFE IN CODE

did not mean to offend him. “That’s too bad,” he answered as if h
meant it, “because we obviously lose talent that way.” ,

I felt immense gratitude at this unexpected opening. I opened
my mouth to go on, to explore the reasons for the cult of the bo
engineer.

But immediately we were interrupted. The company was about to
have an interdivisional water-balloon fight. For weeks, the entire or:
ganization had been engaged in the design of intricate devices for
the delivery of rubberized inflatable containers filled with fluid.
Work had all but stopped; all “spare brain cycles” were involved i
preparations for war.

The friendly colleague joined the planning with great enthusi
asm. The last I saw of him, he was covering a paper napkin with
sketch of a water-balloon catapult.

Here is a suggested letter home from our journey closer to th
machine: Software engineering is a meritocracy. Anyone with th
talents and abilities can join the club. However, if rollerblading
Frisbee playing, and water-balloon wars are not your idea of fun—i
you have friends you would like to see often, children you would like
to raise—you are not likely to stay long.

vil.
I once designed a graphical user interface with a man who wouldn’t
speak to me. My boss hired this man without letting anyone else sit
in on the interview; my boss lived to regret it.

I was asked to brief my new colleague, and, with a third member
of the team, we went into a conference room. There we covered two
whiteboards with lines, boxes, circles, and arrows in four marker
colors. After about half an hour, I noticed that the new hire had be-
come very agitated.

“Are we going too fast?” I asked him.

“Too much for the first day?” said the third.

OUTSIDEOFTIME | 15

“No,” said our new man, “I just can’t do it like this.”

“Do what?” I asked. “Like what?”

His hands were deep in his pockets. He gestured with his elbows.
“Like this,” he said.

“You mean design?” I asked.

“You mean in a meeting?” asked the third.

No answer from our new colleague. A shrug. Another elbow
jlesture.

Something terrible was beginning to occur to me. “You mean

alking?” I asked.

“Yeah, talking,” he said. “I can’t do it by talking.”

By this time in my career, I had met many strange engineers. But
here was the first one who wouldn’t talk at all. Besides, this incident
took place before the existence of standard user interfaces like
Windows and Motif, so we had a lot of design work to do. Not talk-
ing was certainly going to make things difficult.

“So how can you do it?” I asked.

“Mail,” he said immediately, “send me email.”

So, given no choice, we designed a graphical user interface by
email.

Corporations across North America and Europe are still using a
system designed by three people who sent email, one of whom barely
spoke at all.

viil.

Pretty graphical interfaces are commonly called “user friendly.” But
they are not really your friends. Underlying every user-friendly inter-
face is a terrific human contempt.

The basic idea of a graphical interface is that it does not allow
anything alarming to happen. You can pound on the mouse button
all you want, and the system should prevent you from doing anything
stupid. A monkey can pound on the keyboard, your cat can run

16 | LIFEINCODE

across it, your baby can bang it with a fist, but the system should not
crash.
To build such a crash-resistant system, the designer must be able
to imagine—and disallow—the dumbest action. He or she cannot
simply rely on the user’s intelligence: who knows who will be on
the other side of the program? Besides, the user’s intelligence is not
quantifiable; it’s not programmable; it cannot protect the system.
The real task is to forget about the intelligent person on the other side
and think of every single stupid thing anyone might possibly do.
In the designer’s mind, gradually, over months and years, there
created a vision of the user as imbecile. The imbecile vision is man
datory. No good, crash-resistant system can be built except if it’
done for an idiot. The prettier the user interface, and the fewer od
replies the system allows you to make, the dumber you once ap-
peared in the mind of the designer. ;
The designer’s contempt for your intelligence is mostly hidden
deep in the code. But, now and then, the disdain surfaces. Here’s a
small example: You're trying to do something simple, like back up
files on your Mac. The program proceeds for a while, then encoun-
ters an error. Your disk is defective, says a message, and below the
message is a single button. You absolutely must click this button. If
you don’t click it, the program hangs there indefinitely. So—you
disk is defective, your files may be bolloxed up, and the designer leaves
you only one possible reply: You must say, “OK.”

IX.
The computer is about to enter our lives like blood into the capillar-
ies. Soon, everywhere we look, we will see pretty, idiot-proof inter-
faces designed to make us say, “OK.”

A vast delivery system for retail computing is about to come int:
being. The system goes by the name “interactivity.” The very word
interactivity—implies something good and wonderful. Surely a r

OUTSIDE OF TIME | 17

sponse, a reply, an answer is a positive thing. Certainly it signifies an
advance over something else, something bad, something that doesn’t
respond, reply, or answer. There is only one problem: what we will be
interacting with is a machine.

Interactive services are supposed to be delivered “on demand.”
What an aura of power—demand! See a movie, order seats to a
basketball game, make hotel reservations, send a card to Mother—all
services waiting for us on our telephones, televisions, computers.
Midnight, dawn, or day. Sleep or order a pizza: it no longer matters
exactly what we do when. We don’t need to involve anyone else in
the satisfaction of our needs. We don’t even have to talk. We get our
services when we want them, free from the obligations of regularly
scheduled time. We can all live closer to the machine.

“Interactivity” is misnamed. It should be called “asynchrony™
the engineering culture coming to everyday life.

In the workplace, home office, sales floor, we will be “talking” to
programs that are beginning to look surprisingly alike: all full of
animated little pictures we are supposed to pick, like push buttons
on a toddler’s toy. The toy is supposed to please us. Somehow, it is
supposed to replace the satisfactions of transacting meaning with a
mature human being, in the confusion of a natural language, to-
gether, in a room, at a touching distance.

As the computer’s pretty, helpfully waiting face (and contemptu-
ous underlying code) penetrates deeply into daily life, the cult of
the boy engineer comes with it. The engineer’s assumptions and pre-
sumptions are in the code. That’s the purpose of the program, after
all: to sum up the intelligence and intentions of all the engineers
who worked on the system over time, tens and hundreds of people
who have learned an odd and highly specific way of doing things.
Ihe system contains them. It reproduces and re-enacts life as engi-
neers know it. Soon we may all be living the programming life: alone,
floating in mind-time, disdainful of anyone far from the machine.

